Catia customization for Design and Modeling of Two stage spur Gearbox

Mayuresh V.Patwardhan ¹, Uddhavrao Nimbalkar 2

M Tech (Mechanical) PG student Department of Mechanical Engineering, Rajarambapu Institute of Technology, Sakharale, Maharashtra, 415414, INDIA

Assistant Professor, Department of Mechanical Engineering, Rajarambapu Institute of Technology, Sakharale, Maharashtra, 415414, INDIA

Submitted: 01-06-2021 Revised: 14-06-2021 Accepted: 16-06-2021

ABSTRACT: In this paper, we describe how the customization of design task, in solid modeling with CATIA V5 for two stage spur gearbox can be approached, by means of macros (piece of code) and with GUI form. The user has to supply some basic requirements of the gearbox and rest of the different parameters for design of gearbox is calculated by formulas. And then with the help of these parameters, part model of gearbox is created. **KEYWORDS:**CAD,Catia, GUI, Macros,Design, Parametric modeling, two stage spur gearbox

I. INTRODUCTION:

Current scenario of the market is competitive. To sustain in the market for company product time to the market have to be minimum. Companies existing product demands from the customer are to be provided quickly as soon as possible. Existing product requirement has same parametric features of components for different specification. Design and modeling time of the product is generally 60-70% of overall time of the product development. Design phase has lot of potential where time can be saved. Parametric modeling can be used for saving the modeling time. Knowledge based approach can be useful for saving the design time. Lot of repetitive calculations can be saving for avoiding tedious work. CATIA software is selected having strong parameterization. Mechanical product selected is gearbox. Nowadays best of the best innovations are coming into picture, in these, researchers have made one way to reduce maximum design time by doing design automation concept which means integration of GUI developed with the help of computer programming language and market available CAD packages. Graphical User Interface (GUI) is the only way for users to communicate with the system.

But no specific software is available for the design of a specific product. So by this

dissertation approach it is very important to make one tailor-made software which will be useful for complete design of a specific component and output of the software should easily be integrated with other modeling software. In this with use of Macro which means program written for specific task. For developing advanced macros for special needs Catia V5 is an open system. Macros may be useful for creating, analyzing, measuring, modifying. Translating, optimizing surfaces, solids, wireframes and more. Macros are useful for part operation, assembly operation multidisciplinary applications.

II. LITERATURE REVIEW:

Many research attempts have been made in the area of parametric modeling.

Ruchik D. Trivedi et al [1]discussed about integrating the commercially available package Pro/E with Microsoft Excel spreadsheet for 3D parametric modeling. Various product variants of the inner ring of spherical roller bearing have been executed by parametric designing concept in Pro/Engineer Wildfire.

Umesh Bedse et al [2] discussed about developed GUI is made for the case study of design of CI engine parts like cylinder head, cylinder block, piston and crankshaft. CI engine is having many numbers of mechanical components, but parts named above are the most important parts of any CI engine. So design of these parts is useful to take into account to develop a GUI. And creo software is used for modeling.

Indrajitsinh J. Jadeja et al [3]discussed about the work reviews the procedural steps involved in the design of couplings and the development of the software package using visual basic as a tool for the design. This system is carried out on the case study of flange coupling and standard design equation being carried out together

Volume 3, issue 6 June 2021, pp: 1354-1365 www.ijaem.net ISSN: 2395-5252

with the use of programming software and use CREO as modeling software.

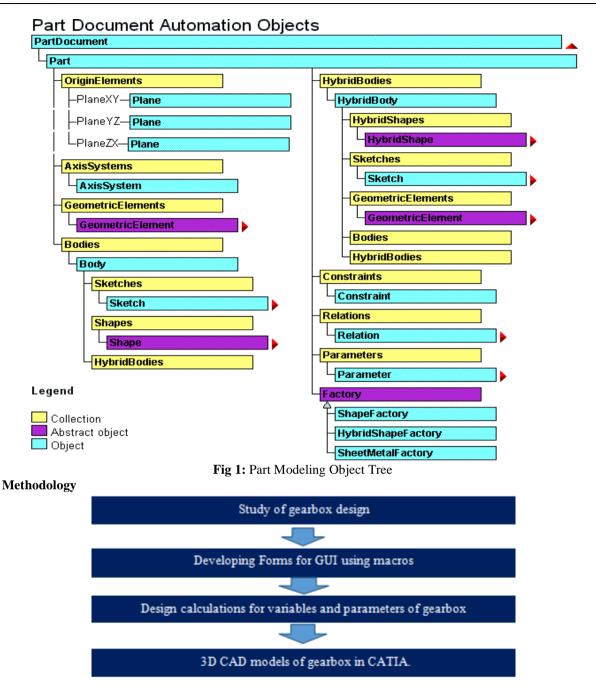
Dhaval b. shah et al [4]discussed about the 3D models for flange type coupling and related dimension database in Microsoft Excel have been prepared. This Excel sheet has been linked with Autodesk Inventor to transfer data and relate to respective features of the part. User can update the model just by modifying the sheet. This takes comparatively very less time to generate complex part models with respect to generating them individually. This automation can further be proceeded by exporting models to the analysis or CAM package.

L.Karikalan et al [5]discussed about the the main purpose of this assignment is to provide a gear box with Low reduction ratio, low weight and efficient for engine up to 500cc. It should also be used in "All Terrain" vehicles.

CATIA V5

CATIA (Computer Aided Three Dimensional Interactive Application) is a multiplatform CAD/CAM/CAE commercial software suite developed by French company Dassault Systems and it is marketed world-wide by IBM. Catia is the world's leading CAD/CAM/CAE software. For developing advanced macros for special needs Catia V5 is open system. A macro is a series of functions, written in a scripting language, that you group in a single command to perform the requested task automatically. These macros may be useful for creating, analyzing, measuring, modifying. Translating, optimizing surfaces, solids, wireframes and more. Macros are used to save time, reduce the possibility of human error by automating repetitive processes, standardization, improving efficiency, expanding Catia's capabilities, and for streamlining tasks. For creating basic structure and basic flow of program we require inputs, outputs, and supporting data from the user. Catia provides customization capability. In Catia the part Objects, which are used for developing part model i.e. three dimensional object are structured under a automation tree.

CATIA V5 MACROS


A macro is a series of functions, written in a scripting language, that you group in a single command to perform the requested task automatically. In simple it is a piece of code written in certain programming language which groups a set of operation that defines a certain task. For each task separate code is written and assembled together by using forms.

CATIA Customization/Automation Objects

In CATIA the part objects, which are used for developing part model i.e. three dimensional object are structured under a tree as shown in the following figure. As and when needed the part object can be extracted with the macro programming for customization or automation of CATIA V5 The Part Document object aggregates, or includes, the part tree structure starting with the Part object located at the top of the part specification tree. These Part Document objects are: Origin Element, Geometric Elements, Bodies and Part objects are: Constraints, Relations, Parameters, and Factory3D, Shape Factory (Sketches, Geometric Elements, and Shapes)

Volume 3, issue 6 June 2021, pp: 1354-1365 www.ijaem.net ISSN: 2395-5252

1. First user need to give input parameters of gearbox to GUI form The input parameters are as follows

```
→ Power (P) in KW → of teeth on gear 1 (Z1) → wice factor

RPM of Gear 1 (N1) → of teeth on gear 3 (Z3) ← or of safety

RPM of Gear 4 (N4) → surface hardness (BHN) → Ultimate stress for gear material Sut - N/mm²
```


Volume 3, issue 6 June 2021, pp: 1354-1365 www.ijaem.net ISSN: 2395-5252

- 2. As the input parameters are given from calculate module we get the value which is best suitable according to design procedure of gearbox
- 3. As user fill that value into the input module value the design is getting checked
- 4. And gear dimensions are generated and model is generated.

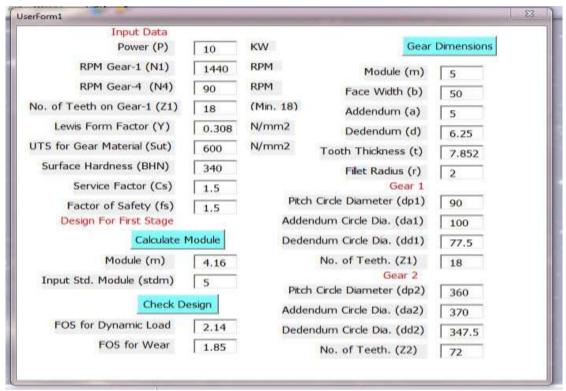


Figure 3: Developed GUI

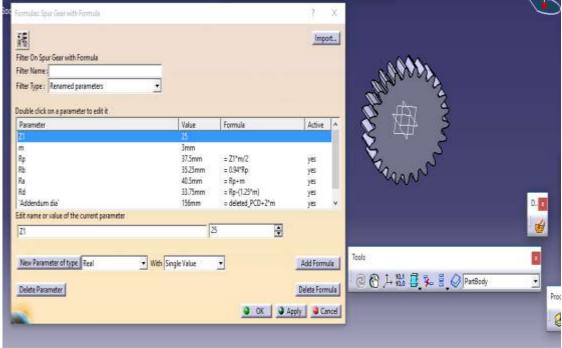


Figure 4: Spur gear with formula

A

International journal of advances in engineering and management (IJAEM) Volume 3, issue 6 June 2021, pp: 1354-1365 www.ijaem.net ISSN: 2395-5252

Design calculations

alculations					
	Notation	Value	Unit	form	nula
Input Data					
Power to be					
transmitted	P	10	KW		
RPM of Input	•	10	11 11		
Shaft (Gear 1)	N1	1440	RPM		
RPM of Output	111	1110	14111		
Shaft (Gear 4)	N4	90	RPM		
Minimum			11111		
number of teeth			Min 18	for 20 Degree I	Pressure
for Gear 1	Z 1	18	angle	Tot 20 Degree 1	Tessure
Lewis form	Li	10	ungic		
Factor for Gear					
1	Y1	0.308			
UTS of Gear		0.500	N/mm2,		
material	Sut	600	Mpa		
Surface	But	000	111pu		
Hardness for					
Gears	BHN	340			
Gears	DIII	340	Maximur	n torque or	
Service factor	Cs	1.5		orque /Rated torque	
			starting to	rque /Kateu torque	
Factor of Safety	fs	1.5			
Assumptions					
-					
Gear teeth pressure angle		20			
Pitch line		20			
		5	m/s		
velocity	V		111/ S		
Ratio b/m	b/m	10		b - Width of gear,	m- module
Material for all					
gears is					
considered					
same, the					
pinion is					
weaker than					
gear,					
Hence it is					
necessary to					
design for					
Pinion i.e. Gear					
1					
Module Based					
on Beam					
Strength					
Velocity Factor	Cv	0.375		3/(3+v)	
Permissible	· ·	3.373		5/(5/17)	
bending stress					
for gear teeth	\Box b	200	N/mm2	Sut/3	
Torque	_ 0	200	1 1/ 11111112	2442	
transmitted by	Mt	66305.96223	Nmm	(60*10^6)*(P)/(2*	*3 142*N1)
Tunishine by	1710	30303.70223		(00 10 0) (1)/(2	5.1 12 111 <i>j</i>

	Gear 1					T	
	Module step-1		19096117		60*10^6/3.142		
	Module step-2		22.50		P*Cs*fs		
	Module step-3		5987520.000		Z1*N1*Cv*(b/1	m)*□ b*Y	
	Module step-4		71.760		Step1*(step2/ste	ep3)	
	Module Based						
	on Beam Strength	m'	4.16		Cuberoot(step-4	1)	
	Sueligui	111	4.10		Cuberoot(step-2	+)	
В	Selection of Moo Wear Strength Standardized	lule & FOS	S For Beam St	rength &			
	Module Pitch Circle	stdm	5				
	diameter for						
	Gear 1	dp1	90	mm	m*Z1		
	FOS For Considering						
B1	Dynamic load						
	Tangential						
	force due to	D.	1 472 4 65027	N			
	rated torque Actual Pitch	Pt	1473.465827	N			
	line velocity	Va	6.78672	m/s	Create If Functi	ion for Cv	
	Velocity Factor	Cv	0.30654				
	Effective load	Peff	7210.1987		Peff=Cs*Pt/Cv		
	Beam Strength	Sb	15400.000	N	m*b**sb*Y		
	FOS						
	Considering	F.1	2.1250				
	Dynamic load	Fsb	2.1359				
	FOS For Wear						
	or Pitting						
B2	Failure						
	Total transmission						
	ratio	i	16		N1/N4		
	Speed						
	reduction at each stage	i1	4.000		sqrt(i)		
	each stage						
	Number of	Z2'	72.000		i1*Z1		-
	teeth for Gear 2	Z 2	72				
	Pitch Circle						
	diameter for Gear 2	dp2	360	mm			
	Width of gear	up2	300	mm			-
	tooth	b	50	mm			

Ratio factor for								
external gears	Q	1.6000		Q = 2Z2/(Z1-	+Z2)			
Load stress factor	K	1.8496 13317.12000 N		K=0.16*(BHN/100)^2				
Wear strength for Gear	Sw			Sw= b*Q*dp1*K				
FOS for wear load	Fsw	1.84698		Fsw=Sw/Pef	Ŧ			
Toda	1300	1.04070		1 5W - 5W/1 CI	1			
IF Fsw is less Increase Module	than 1,	Message Box						
	IF Fsw is more than 1, Message Box Design is safe							
S								
Gear								
Dimensions						E.g.		
						tb-	oto	
						templ box	aie fo	or
Module	m	5	mm	(b/m)*m	tbmg -	mg		
						tb-		
						templ box f		
Face Width	b	50	mm	m	tbb	value	01	
Addendum	a	5	mm	m	tba			
Dedendum	d	6.25	mm	1.25*m	tbd			
Tooth					_			
Thickness	t	7.854	mm	1.5708*m	tbt			
Fillet radius	r	2	mm	0.4*m	tbr			
Gear 1 Pitch Circle								
diameter	dp1	90	mm		tbdp1g			
Addendum	_							
Circle diameter	da1	100	mm	dp1+2*a	tbda1			
Dedendum Circle Diameter	dd1	77.5	mm	dp1-2*d	tbdd1			
Number of								
teeth	Z1	18			tbZ1g			
Gear 2								
Pitch Circle diameter	dp2	360	mm		tbdp2g			
Addendum	GP-				10 0 P 2 B			
Circle diameter	da2	370	mm	dp1+2*a	tbda2		_	_
Dedendum Circle Diameter	dd2	347.5	mm	dp1-2*d	tbdd2			
Number of	uu2	517.5	111111	up1 2 u	todd2			
teeth	Z 2	72			tbZ2g			

Volume 3, issue 6 June 2021, pp: 1354-1365 www.ijaem.net ISSN: 2395-5252

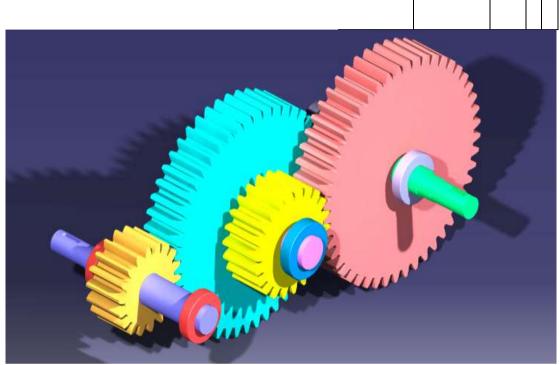


Figure 4: model for assembly of gearbox

D	Shaft	Selection
---	-------	-----------

Shaft 1				
Center Distance				
between Gear1 &				
	C1	225	*****	(dn1 dn2)/2
Gear2	C1	225	mm	(dp1+dp2)/2
Center Distance				
between Gear3 &				
Gear4	C2	225	mm	(dp3+dp4)/2
ASME code for				
	1-1-	1.5		
Bending moment	kb	1.3		
ASME code for				
torsional moment	kt	1		
A				
Assumptions				
Factor of Safety				
_	Fss	2		
Factor of Safety	Fss	2		
Factor of Safety for shaft 1 Distance Between	Fss	2		
Factor of Safety for shaft 1	Fss	-	mm	
Factor of Safety for shaft 1 Distance Between Bearings on Shaft 1	1 55	2 200	mm	
Factor of Safety for shaft 1 Distance Between Bearings on Shaft 1 Permissible Shear	L1	200		0.18*Sut
Factor of Safety for shaft 1 Distance Between Bearings on Shaft 1 Permissible Shear Stress	1 55	-		0.18*Sut
Factor of Safety for shaft 1 Distance Between Bearings on Shaft 1 Permissible Shear Stress Gears are fixed on	L1	200		0.18*Sut
Factor of Safety for shaft 1 Distance Between Bearings on Shaft 1 Permissible Shear Stress Gears are fixed on shaft by	L1	200		0.18*Sut
Factor of Safety for shaft 1 Distance Between Bearings on Shaft 1 Permissible Shear Stress Gears are fixed on	L1	200		0.18*Sut
Factor of Safety for shaft 1 Distance Between Bearings on Shaft 1 Permissible Shear Stress Gears are fixed on shaft by	L1	200		

Tangential Force				
at Gear 1 (C) Axial Force at	Ftc	1473.466	N	T1x2/dp1
Gear 1 Resultant force at	Fac	536.298	N	Ftc* tan20
C	Fct	1568.030	N	Ftc/ Cos20
Weight of Spur Gear 1	Ws1	24.499	N	3.142/4*dp1*dp1*b* (7.85*10^(-6))*9.81
Total Resultant Force at C	Fc	1592.528		
Reactions at A	Ra	796.264	N	Fc*(L1/2)/L1
Reactions at B Maximum Bending moment	Rb	796.264	N	Fc-Ra
at C Equivalent	Mbc	79626.40518	Nmm	Fc*L1/4
twisting moment Shaft 1 Diameter	Te1	136610.0309		$Sqrt((Kb*Mbc)^2+(Kt*Mt)^2)$
cube	d1^3	17176.76477		(16/(3.142*tmax))*Te
Shaft 1 Diameter	d1	25.802		
		25.00	mm	
Considering next st	andard val	ue for		
Shaft Diameter			27.00	mm
Shaft 2 Distance Between Bearings on Shaft 2	L2	180	mm	
Distance Between Bearing and Spur	LEG	45		
Gear 2 Distance Between	LEG	45	mm	
Gear 2 & 3	LGH	90	mm	
	LEH	135		
	LHF	45		
Tangential Force	E.C	269.266	N	Ma/(1.0/0)
at Gear 2 (G)	FtG	368.366	N	Mt/(dp2/2)
Weight of Gear 2 Total force at	Wg2	389.9790136		
Gear 2	FG	758.345	N	
Tangential Force at Gear 3 (H)	FtH	1473.466	N	Mt/(dp3/2)
Weight of Gear 3	Wg3	24.37369	N	()
Total force at Gear 3	FH	1497.840		
Gear 5	111	1477.040		
Taking moment at	D.E.	1010 0 2 300 1		(FG*LEG+
E, Force at F	RF	1312.966004	N	(FH*(LEG+LGH)))/L2
Force at E	RE	943.219	N	FG+FH-RF
Bending moment at G	MG	42444.85418	Nmm	RE*LEG

Е

Bending moment at F	МН	59083.4702	Nmm	RE*LEH-FG*LGH
Maximum Bending moment	Mmax2	59083.4702	Nmm	
Equivalent Twisting moment	Te2 d2^3 d2	110683.8183 13916.91298 24.05364907	Nmm mm	Sqrt((Kb*Mmax2)^2+(Kt*T)^2)
Considering next standard value for Shaft Diameter	d2	24	mm	
Shaft 3 Distance Between Bearings on Shaft 3 Distance Between Bearing and Spur Gear 4	L3 LKJ	240 150	mm	
	LIK	90		
Tangential Force at Gear 4 (K) Axial Force at	FtK	368.366	N	Mt/(dp4/2)
Gear 14	Fak	134.074	N	Ftk* tan20
Resultant force at k	FrK	392.007	N	Ftk/ Cos20
Weight of Gear 4 Total Force at	Wg4	389.979		
Gear 4	Fk	781.986	N	
Reaction at J	RJ	293.245	N	FK*LIK/L3
Reaction at I Maximum Bending moment	RI	488.742	N	FK-RJ
at K	MbK	43986.73551	Nmm	RI * LIK
Equivalent				
twisting moment Shaft 3 Diameter	Te3	93540.65777	Nmm	$sqrt((Kb*MbK)^2+(Kt*Mt)^2)$
cube	d3^3	11761.40482		(16/(3.142*tmax))*Te
Shaft 3 Diameter	d3	22.742	mm	
Considering next std value for Shaft		22.00	mm	
Dia	d3	30.00	mm	
Bearing Selection				
	meter at	25	mm	

Volume 3, issue 6 June 2021, pp: 1354-1365 www.ijaem.net ISSN: 2395-5252

bearings				
Selected Bearing				
Number		6005		
Load factor /				
Service Factor				
(Ks)		1.5		
Bearing ID		25	mm	
Bearing OD		47	mm	
Thickness		12	mm	
Static Load				
Rating	C01	6.55	KN	
Dynamic Load	C1	11.0	773.7	
Rating	C1	11.9	KN	
Radial load at				
Bearing A	Fra	796.264	N R	я
Axial Load at	114	770.204	11	u
Bearing A	Faa	0	N	
RADIĂL LOAD				
RATING FOR				
BEARING	X	1		
AXIAL LOAD				
RATING FOR	• •			
BEARING	Y	1		
EQUIVALENT DYNAMIC				
BEARING				
LOAD	Pb	1194.396078	C	XF_r+YF_a)*Ks
- · 	-	,, , .	(-	1 a / 113
Bearing life in				
Revolutions	LRev	989.00	Millions of	revolutions

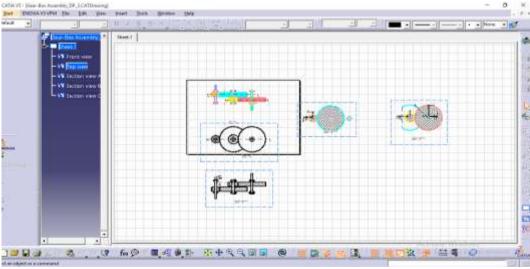


Fig 5: Drafted View of Gearbox

Volume 3, issue 6 June 2021, pp: 1354-1365 www.ijaem.net ISSN: 2395-5252

III. CONCLUSION

The objective was to customize CATIAV5 for design two stage spur gearbox with minimum user requirements (inputs). With the help of this customization gearbox is generated. Also the time required for generating part model (three dimensional model) of gearbox is reduced to few minutes. This part model can be used to draft different views of the gearbox which can directly be used for manufacturing processes. Thus, customization will increase productivity of the designer with increase in quality of design which in turn reduces lead time for design of gearbox.

REFERENCES

- [1]. Ruchik D. Trivedi (2013). 3D Parametric Modeling for Product Variants Using Case Study on Inner Ring of Spherical Roller Bearing. Mechanical Engineering Tracks of the 3rd Nirma University International Conference on Engineering. Procardia Engineering 51(2013)709 –714
- [2]. Umesh Bedse (2016).Developing a GUI based Design Software in VB Environment to Integrate with CREO for Design and Modeling of CI Engine. International Journal of Latest Trends in Engineering and Technology (IJLTET), Vol. 6 Issue 4 March 2016, ISSN: 2278-621X
- [3]. Indrajitsinh J. Jadeja (2014).Developing a GUI based Design Software in VB Environment to Integrate with CREO for Design and Modeling using Case Study of Coupling. International Journal of Engineering Sciences & Research Technology April, 2014 [4089-4095] ISSN: 2277 9655
- [4]. DHAVAL B. SHAH (2013).Parametric Modeling and Drawing Automation for

- Flange Coupling Using Excel Spreadsheet. International Journal of Research in Engineering & Technology (IJRET) Vol. 1, Issue 2, July 2013, 187-192 © Impact Journals
- [5]. L.Karikalan (2018). Design and Analysis of Two Stage Reduction Gearbox for All Terrain Vehicles. International Journal of Advance Engineering and Research Development Volume 5, Issue 03, March -2018 e-ISSN (O): 2348-4470 p-ISSN (P): 2348-6406
- ĆUKOVIĆ [6]. Saša (2010).Automatic Determination of Grinding Tool Profile for Helical Surfaces Machining Using CATIA/VB Interface. UPB Scientific Bulletin, Series D: Mechanical Engineering · January 2010Vol. 72, Issue. 2, 2010 ISSN 1454-2358
- [7]. Thakkar A. and Patel Y., 2012. Integration of PRO/E with Excel and C language for design automation, India: IJERT, pp. 1-4
- [8]. V.B.Bhandari "A text book of design of machine elements", McGraw-Hill education India Pvt.Ltd
- [9]. R.S.Khurmi and J.K.Gupta "A text book of Machine Design", Euraisa Publication House, 2005 pp1021-1065